Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Cell ; 187(3): 750-763.e20, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38242132

ABSTRACT

Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.


Subject(s)
Complement System Proteins , Gastrointestinal Microbiome , Milk , Animals , Female , Humans , Infant , Mice , Bacteria , Breast Feeding , Citrobacter rodentium , Complement System Proteins/analysis , Immunologic Factors , Infant Health , Milk, Human , Milk/chemistry , Enterobacteriaceae Infections/immunology
3.
Cell Mol Gastroenterol Hepatol ; 15(4): 1000-1015, 2023.
Article in English | MEDLINE | ID: mdl-36592863

ABSTRACT

BACKGROUND & AIMS: The adipokine CTRP3 has anti-inflammatory effects in several nonintestinal disorders. Although serum CTRP3 is reduced in patients with inflammatory bowel disease (IBD), its function in IBD has not been established. Here, we elucidate the function of CTRP3 in intestinal inflammation. METHODS: CTRP3 knockout (KO) and overexpressing transgenic (Tg) mice, along with their corresponding wild-type littermates, were treated with dextran sulfate sodium for 6-10 days. Colitis phenotypes and histologic data were analyzed. CTRP3-mediated signaling was examined in murine and human intestinal mucosa and mouse intestinal organoids derived from CTRP3 KO and Tg mice. RESULTS: CTRP3 KO mice developed more severe colitis, whereas CTRP3 Tg mice developed less severe colitis than wild-type littermates. The deletion of CTRP3 correlated with decreased levels of Sirtuin-1 (SIRT1), a histone deacetylase, and increased levels of phosphorylated/acetylated NF-κB subunit p65 and proinflammatory cytokines tumor necrosis factor-α and interleukin-6. Results from CTRP3 Tg mice were inverse to those from CTRP3 KO mice. The addition of SIRT1 activator resveratrol to KO intestinal organoids and SIRT1 inhibitor Ex-527 to Tg intestinal organoids suggest that SIRT1 is a downstream effector of CTRP3-related inflammatory changes. In patients with IBD, a similar CTRP3/SIRT1/NF-κB relationship was observed. CONCLUSIONS: CTRP3 expression levels correlate negatively with intestinal inflammation in acute mouse colitis models and patients with IBD. CTRP3 may attenuate intestinal inflammation via SIRT1/NF-κB signaling. The manipulation of CTRP3 signaling, including through the use of SIRT1 activators, may offer translational potential in the treatment of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Humans , Mice , Adipokines/metabolism , Colitis/chemically induced , Colitis/metabolism , Complement C1q , Inflammation/metabolism , Mice, Knockout , Mice, Transgenic , NF-kappa B/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Tumor Necrosis Factor-alpha
4.
FASEB J ; 37(2): e22739, 2023 02.
Article in English | MEDLINE | ID: mdl-36583647

ABSTRACT

Transient receptor potential ankyrin 1 (TRPA1) is expressed in gastrointestinal tract and plays important roles in intestinal motility and visceral hypersensitivity. However, the potential role of TRPA1 in host defense, particularly against intestinal pathogens, is unknown. Here, we show that Trpa1 knockout mice exhibited increased susceptibility to Citrobacter rodentium infection, associated with the increased severity of diarrhea and intestinal permeability associated with the disrupted tight junctions (TJs) in colonic epithelia. We further demonstrated the expression of TRPA1 in murine colonic epithelial cells (CECs) and human epithelial Caco-2 cells both at protein level and transcription level. Using calcium imaging, TRPA1 agonists allyl isothiocyanates (AITC) and hydrogen peroxide were observed to induce a transient Ca2+ response in Caco-2 cells, respectively. Moreover, TRPA1 knockdown in Caco-2 cells resulted in the decreased expression of TJ proteins, ZO-1 and Occludin, and in the increased paracellular permeabilities and the reduced TEER values of Caco-2 monolayers in vitro. Furthermore, inhibition of TRPA1 by HC-030031 in the confluent Caco-2 cells caused the altered distribution and expression of TJ proteins, ZO-1, Occludin, and Claudin-3, and exacerbated the bacterial endotoxin lipopolysaccharide (LPS)-induced damage to these TJ proteins and actin cytoskeleton. By contrast, AITC pretreatment restored the distribution and expression of these TJ proteins in the confluent Caco-2 cells upon LPS challenge. Our results identify an unrecognized protective role of TRPA1 in host defense against an enteric bacterial pathogen by maintaining colonic epithelium barrier function, at least in part, via preserving the distribution and expression of TJ proteins in CECs.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections , Mice , Humans , Animals , Caco-2 Cells , Occludin/genetics , Occludin/metabolism , Lipopolysaccharides/metabolism , Intestinal Mucosa/metabolism , Epithelial Cells/metabolism , Permeability , Enterobacteriaceae Infections/pathology , Cytoskeletal Proteins/metabolism , Mice, Knockout , Tight Junctions/metabolism , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism
5.
Oncogene ; 42(8): 586-600, 2023 02.
Article in English | MEDLINE | ID: mdl-36550358

ABSTRACT

The MRE11-RAD50-NBS1 (MRN) complex plays a crucial role in DNA double-strand breaks (DSBs) sensing and initiation of signaling cascades. However, the precise mechanisms by which the recruitment of MRN complex is regulated has yet to be elucidated. Here, we identified TRIpartite motif-containing protein 24 (TRIM24), a protein considered as an oncogene overexpressed in cancers, as a novel signaling molecule in response to DSBs. TRIM24 is essential for DSBs-induced recruitment of MRN complex and activation of downstream signaling. In the absence of TRIM24, MRN mediated DSBs repair is remarkably diminished. Mechanistically, TRIM24 is phosphorylated by ataxia-telangiectasia mutated (ATM) and then recruited to DSBs sites, facilitating the accumulation of the MRN components to chromatin. Depletion of TRIM24 sensitizes human hepatocellular carcinoma cells to cancer therapy agent-induced apoptosis and retards the tumor growth in a subcutaneous xenograft tumor mouse model. Together, our data reveal a novel function of TRIM24 in response to DSBs through regulating the MRN complex, which suggests that TRIM24 may be a potential therapeutic molecular target for tumor treatment.


Subject(s)
Carrier Proteins , Cell Cycle Proteins , DNA Breaks, Double-Stranded , Animals , Humans , Mice , Acid Anhydride Hydrolases/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
6.
Infect Immun ; 90(7): e0019822, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35861565

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important causative agents for foodborne diseases worldwide. Besides antibiotic treatment, vaccination has been deemed as the most effective strategy for preventing EPEC- and EHEC-caused foodborne illnesses. Despite substantial progress made in identifying promising antigens and efficacious vaccines, no vaccines against EPEC or EHEC have yet been licensed. Mice are inherently resistant to EPEC and EHEC infections; infection with Citrobacter rodentium (CR), the murine equivalent of EPEC and EHEC, in mice has been widely used as a model to study bacterial pathogenesis and develop novel vaccine strategies. Mirroring the severe outcomes of EPEC and EHEC infections in immunocompromised populations, immunocompromised mouse strains such as interleukin-22 knockout (Il22-/-) are susceptible to CR infection with severe clinical symptoms and mortality. Live attenuated bacterial vaccine strategies have been scarcely investigated for EPEC and EHEC infections, in particular in immunocompromised populations associated with severe outcomes. Here we examined whether live attenuated CR strain with rational genetic manipulation generates protective immunity against lethal CR infection in the susceptible Il22-/- mice. Our results demonstrate that oral administration of live ΔespFΔushA strain promotes efficient systemic and humoral immunity against a wide range of CR virulence determinants, thus protecting otherwise lethal CR infection, even in immunocompromised Il22-/- mice. This provides a proof of concept of live attenuated vaccination strategy for preventing CR infection in immunocompromised hosts associated with more severe symptoms and lethality.


Subject(s)
Enterobacteriaceae Infections , Enterohemorrhagic Escherichia coli , Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Administration, Oral , Animals , Citrobacter rodentium , Enterobacteriaceae Infections/microbiology , Enteropathogenic Escherichia coli/genetics , Immunocompromised Host , Mice
7.
Cancer Discov ; 12(8): 1873-1885, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35678528

ABSTRACT

Defining the complex role of the microbiome in colorectal cancer and the discovery of novel, protumorigenic microbes are areas of active investigation. In the present study, culturing and reassociation experiments revealed that toxigenic strains of Clostridioides difficile drove the tumorigenic phenotype of a subset of colorectal cancer patient-derived mucosal slurries in germ-free ApcMin/+ mice. Tumorigenesis was dependent on the C. difficile toxin TcdB and was associated with induction of Wnt signaling, reactive oxygen species, and protumorigenic mucosal immune responses marked by the infiltration of activated myeloid cells and IL17-producing lymphoid and innate lymphoid cell subsets. These findings suggest that chronic colonization with toxigenic C. difficile is a potential driver of colorectal cancer in patients. SIGNIFICANCE: Colorectal cancer is a leading cause of cancer and cancer-related deaths worldwide, with a multifactorial etiology that likely includes procarcinogenic bacteria. Using human colon cancer specimens, culturing, and murine models, we demonstrate that chronic infection with the enteric pathogen C. difficile is a previously unrecognized contributor to colonic tumorigenesis. See related commentary by Jain and Dudeja, p. 1838. This article is highlighted in the In This Issue feature, p. 1825.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Colonic Neoplasms , Colorectal Neoplasms , Animals , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Carcinogenesis , Clostridioides , Humans , Immunity, Innate , Lymphocytes/metabolism , Mice
8.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34969677

ABSTRACT

Hemachromatosis (iron-overload) increases host susceptibility to siderophilic bacterial infections that cause serious complications, but the underlying mechanisms remain elusive. The present study demonstrates that oral infection with hyperyersiniabactin (Ybt) producing Yersinia pseudotuberculosis Δfur mutant (termed Δfur) results in severe systemic infection and acute mortality to hemochromatotic mice due to rapid disruption of the intestinal barrier. Transcriptome analysis of Δfur-infected intestine revealed up-regulation in cytokine-cytokine receptor interactions, the complement and coagulation cascade, the NF-κB signaling pathway, and chemokine signaling pathways, and down-regulation in cell-adhesion molecules and Toll-like receptor signaling pathways. Further studies indicate that dysregulated interleukin (IL)-1ß signaling triggered in hemachromatotic mice infected with Δfur damages the intestinal barrier by activation of myosin light-chain kinases (MLCK) and excessive neutrophilia. Inhibiting MLCK activity or depleting neutrophil infiltration reduces barrier disruption, largely ameliorates immunopathology, and substantially rescues hemochromatotic mice from lethal Δfur infection. Moreover, early intervention of IL-1ß overproduction can completely rescue hemochromatotic mice from the lethal infection.


Subject(s)
Hemochromatosis/metabolism , Intestines/metabolism , Yersinia pseudotuberculosis Infections/metabolism , Yersinia pseudotuberculosis/metabolism , Animals , Bacterial Proteins/genetics , Calcium-Binding Proteins/metabolism , Cytokines/metabolism , Inflammation , Interleukin-1beta/metabolism , Intestines/pathology , Mice , Myosin-Light-Chain Kinase/metabolism , NF-kappa B/metabolism , Repressor Proteins/genetics , Siderophores/metabolism , Signal Transduction , Transcriptome , Yersinia pseudotuberculosis/genetics
9.
Cancer Discov ; 12(1): 236-249, 2022 01.
Article in English | MEDLINE | ID: mdl-34479870

ABSTRACT

Chronic and low-grade inflammation associated with persistent bacterial infections has been linked to colon tumor development; however, the impact of transient and self-limited infections in bacterially driven colon tumorigenesis has remained enigmatic. Here we report that UshA is a novel genotoxin in attaching/effacing (A/E) pathogens, which include the human pathogens enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and their murine equivalent Citrobacter rodentium (CR). UshA harbors direct DNA digestion activity with a catalytic histidine-aspartic acid dyad. Injected via the type III secretion system (T3SS) into host cells, UshA triggers DNA damage and initiates tumorigenic transformation during infections in vitro and in vivo. Moreover, UshA plays an indispensable role in CR infection-accelerated colon tumorigenesis in genetically susceptible Apc MinΔ716/+ mice. Collectively, our results reveal that UshA, functioning as a bacterial T3SS-dependent genotoxin, plays a critical role in prompting transient and noninvasive bacterial infection-accelerated colon tumorigenesis in mice. SIGNIFICANCE: We identified UshA, a novel T3SS-dependent genotoxin in A/E pathogens that possesses direct DNA digestion activity and confers bacterially accelerated colon tumorigenesis in mice. Our results demonstrate that acute and noninvasive infection with A/E pathogens harbors a far-reaching impact on the development of colon cancer.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Cell Transformation, Neoplastic/pathology , Citrobacter rodentium/pathogenicity , Colorectal Neoplasms/pathology , Enteropathogenic Escherichia coli/pathogenicity , Mutagens/pharmacology , Animals , Cell Line, Tumor/drug effects , Colorectal Neoplasms/microbiology , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL
10.
Biomaterials ; 279: 121182, 2021 12.
Article in English | MEDLINE | ID: mdl-34688987

ABSTRACT

The clinical benefit of PD-1/PD-L1 blockade immunotherapy is substantially restricted by insufficient infiltration of T lymphocytes into tumors and compromised therapeutic effects due to immune-related adverse events following systemic administration. Some chemotherapeutic agents have been reported to trigger tumor-associated T cell responses, providing a promising strategy to achieve potent immune activation in a synergistic manner with PD-1 blockade immunotherapy. In light of this, a localized chemoimmunotherapy system was developed using an anti-cancer drug-based supramolecular polymer (SP) hydrogel to "re-edit" the host's immune system to combat cancer. This in situ forming injectable aPD1/TT6 SP hydrogel serves as a drug-delivery depot for sustained release of bioactive camptothecin (CPT) and aPD1 into the tumor microenvironment, priming the tumor for robust infiltration of tumor-associated T cells and subsequently prompting a response to the immune checkpoint blockade. Our in vivo results demonstrate that this chemoimmunotherapy hydrogel provokes a long-term and systemic anticancer T cell immune response, which elicits tumor regression while also inhibiting tumor recurrence and potential metastasis.


Subject(s)
Hydrogels , Neoplasms , Cell Line, Tumor , Humans , Immunotherapy , Neoplasms/drug therapy , T-Lymphocytes , Tumor Microenvironment
11.
Exp Physiol ; 106(12): 2502-2516, 2021 12.
Article in English | MEDLINE | ID: mdl-34647371

ABSTRACT

NEW FINDINGS: What is the central question of this study? The physiological function of Mas-related G protein-coupled receptor D (MrgprD) in gastrointestinal motility is unknown. The aim of this study was to assess the effects of MrgprD and its receptor agonists on murine gastrointestinal motility. What is the main finding and its importance? Mrgprd deficiency improved murine gastrointestinal motility in vivo but had no effects on the spontaneous contractions of murine intestinal rings ex vivo. Systemic administration of the MrgprD ligand, either ß-alanine or alamandine, delayed gastrointestinal transit in vivo and attenuated the spontaneous contractions of isolated intestinal rings ex vivo. ABSTRACT: Mas-related G protein-coupled receptor D (MrgprD) was first identified in sensory neurons of mouse dorsal root ganglion and has been demonstrated to be involved in sensations of pain and itch. Although expression of MrgprD has recently been found in the gastrointestinal (GI) tract, its physiological role in GI motility is unknown. To address this question, we used Mrgprd knockout (Mrgprd-/- ) mice and MrgprD agonists to examine the effects of Mrgprd gene deletion and MrgprD signalling activation, respectively, on murine intestinal motility, both in vivo and ex vivo. We observed that the deletion of Mrgprd accelerated the transmission of charcoal through the mouse GI tract. But Mrgprd deficiency did not affect the mean amplitudes and frequencies of spontaneous contractions in ileum ex vivo. Colonic motor complexes in the proximal and the distal colon were recorded from wild-type and Mrgprd-/- mice, but their control frequencies were not different. Moreover, in wild-type mice, systemic administration of an MrgprD agonist, either ß-alanine or alamandine, delayed GI transit in vivo and suppressed spontaneous contractions in the ileum and colonic motor complexes in the colon ex vivo. Our results suggest that MrgprD and its agonist are involved in the modulation of GI motility in mice.


Subject(s)
Ganglia, Spinal , Gastrointestinal Motility , Animals , Colon/metabolism , Ganglia, Spinal/metabolism , Gastrointestinal Transit , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism
12.
Cell Signal ; 76: 109813, 2020 12.
Article in English | MEDLINE | ID: mdl-33080316

ABSTRACT

Mas-related G protein-coupled receptor D (MrgprD) is mainly expressed in small-diameter sensory neurons of the dorsal root ganglion (DRG). Results from previous studies suggest that MrgprD participates in mechanical hyperalgesia and nerve injury-induced neuropathic pain. However, it remains elusive whether and how MrgprD is involved in inflammatory pain. Here, we used a mouse model of chronic inflammatory pain established by intraperitoneal administration of lipopolysaccharide (LPS). The LPS injection induced an evident peripheral neuroinflammation and mechanical hyperalgesia in the mice and increased MrgprD expression in the DRG. The LPS administration also augmented the proportion of MrgprD-expressing neurons in the lumbar 4 DRG. Behaviorally, the LPS-induced hypersensitivities to mechanical and cold stimuli, but not to a heat stimulus, were substantially attenuated in Mrgprd-knockout mice compared with wildtype littermates. Mrgprd deletion in DRGs suppressed the LPS-triggered activation of the NF-κB signaling pathway and attenuated LPS-induced up-regulation of pro-inflammatory factors. Moreover, ectopic overexpression of MrgprD in HEK293 cells stably expressing mouse toll-like receptor 4 (TLR4) markedly promoted the LPS-induced NF-κB activation and enhanced NF-κB's DNA-binding activity. Furthermore, MrgprD physically interacted with TGF-ß-activated kinase 1 (TAK1) and I-kappa-B-kinase (IKK) complexes, but not with mitogen-activated protein kinases (MAPKs) in mouse DRGs. In macrophage-like RAW 264.7 cells, MrgprD also interacted with TAK1 and IKK complex, and the treatment of MrgprD agonist elicited the activation of NF-κB signaling, but not of mitogen-activated protein kinases (MAPKs) signaling pathway. Our findings indicate that MrgprD facilitates the development of LPS-triggered persistent inflammatory hyperalgesia by promoting canonical NF-κB activation, highlighting the important roles of MrgprD in NF-κB-mediated inflammation and chronic pain.


Subject(s)
Hyperalgesia/metabolism , Inflammation/metabolism , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/metabolism , Pain/metabolism , Receptors, G-Protein-Coupled/physiology , Animals , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells
13.
JCI Insight ; 5(20)2020 10 15.
Article in English | MEDLINE | ID: mdl-32897876

ABSTRACT

ZIP8 is a metal transporter with a role in manganese (Mn) homeostasis. A common genetic variant in ZIP8 (rs13107325; A391T) ranks in the top 10 of pleiotropic SNPs identified in GWAS; A391T has associations with an increased risk of schizophrenia, obesity, Crohn's disease, and reduced blood Mn. Here, we used CRISPR/Cas9-mediated knockin (KI) to generate a mouse model of ZIP8 A391T (Zip8 393T-KI mice). Recapitulating the SNP association with blood Mn, blood Mn was reduced in Zip8 393T-KI mice. There was restricted abnormal tissue Mn homeostasis, with decreases in liver and kidney Mn and a reciprocal increase in biliary Mn, providing in vivo evidence of hypomorphic Zip8 function. Upon challenge in a chemically induced colitis model, male Zip8 393T-KI mice exhibited enhanced disease susceptibility. ZIP8 391-Thr associated with reduced triantennary plasma N-glycan species in a population-based cohort to define a genotype-specific glycophenotype hypothesized to be linked to Mn-dependent glycosyltransferase activity. This glycophenotype was maintained in a cohort of patients with Crohn's disease. These data and the pleiotropic disease associations with ZIP8 391-Thr suggest underappreciated roles of Mn homeostasis in complex human disease.


Subject(s)
Cation Transport Proteins/genetics , Crohn Disease/genetics , Kidney/metabolism , Manganese/metabolism , Animals , CRISPR-Cas Systems/genetics , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Crohn Disease/metabolism , Crohn Disease/pathology , Dextran Sulfate/toxicity , Genetic Predisposition to Disease , Genome-Wide Association Study , Homeostasis/genetics , Humans , Kidney/pathology , Liver/metabolism , Liver/pathology , Male , Manganese/blood , Mice , Polymorphism, Single Nucleotide/genetics
14.
Nat Biomed Eng ; 4(11): 1090-1101, 2020 11.
Article in English | MEDLINE | ID: mdl-32778697

ABSTRACT

Tumours with an immunosuppressive microenvironment respond poorly to therapy. Activation of the stimulator of interferon genes (STING) pathway can enhance intratumoural immune activation, but STING agonists are associated with high toxicity and degrade prematurely, which limits their effectiveness. Here, we show that the extended intratumoural release of the STING agonist cyclic di-AMP transforms the tumour microenvironment from immunosuppressive to immunostimulatory, increasing the efficacy of antitumour therapies. The STING agonist was electrostatically complexed with nanotubes comprising a peptide-drug conjugate (a peptide that binds to the protein neuropilin-1, which is highly expressed in tumours, and the chemotherapeutic agent camptothecin) that self-assemble in situ into a supramolecular hydrogel. In multiple mouse models of murine tumours, a single low dose of the STING agonist led to tumour regression and increased animal survival, and to long-term immunological memory and systemic immune surveillance, which protected the mice against tumour recurrence and the formation of metastases. Locally delivered STING agonists could help to reduce tumour immunosuppression and enhance the efficacy of a wide range of cancer therapies.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Camptothecin/administration & dosage , Camptothecin/chemistry , Drug Delivery Systems/methods , Immunotherapy/methods , Animals , Antineoplastic Agents, Phytogenic/immunology , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Camptothecin/immunology , Cell Line, Tumor , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Female , Hydrogels/administration & dosage , Hydrogels/chemistry , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanotubes/chemistry , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
15.
Sci Adv ; 6(18): eaaz8985, 2020 05.
Article in English | MEDLINE | ID: mdl-32490201

ABSTRACT

Immune checkpoint blockers (ICBs) have shown great promise at harnessing immune system to combat cancer. However, only a fraction of patients can directly benefit from the anti-programmed cell death protein 1 (aPD1) therapy, and the treatment often leads to immune-related adverse effects. In this context, we developed a prodrug hydrogelator for local delivery of ICBs to boost the host's immune system against tumor. We found that this carrier-free therapeutic system can serve as a reservoir for extended tumoral release of camptothecin and aPD1 antibody, resulting in an immune-stimulating tumor microenvironment for boosted PD-1 blockade immune response. Our in vivo results revealed that this combination chemoimmunotherapy elicits robust and durable systemic anticancer immunity, inducing tumor regression and inhibiting tumor recurrence and metastasis. This work sheds important light into the use of small-molecule prodrugs as both chemotherapeutic and carrier to awaken and enhance antitumor immune system for improved ICBs therapy.

16.
Cancer Med ; 8(13): 6106-6113, 2019 10.
Article in English | MEDLINE | ID: mdl-31436046

ABSTRACT

Although targeting DNA repair signaling pathways has emerged as a promising therapeutic for skin cancer, the relevance of DNA damage responses (DDR) in the development and survival of nonmelanoma skin cancer (NMSC), the most common type of skin cancer, remains obscure. Here, we report that Src-associated substrate during mitosis of 68 kDa (Sam68), an early signaling molecule in DDR, is elevated in skin tumor tissues derived from NMSC patients and skin lesions from Gli2-transgenic mice. Downregulation of Sam68 impacts the growth and survival of human tumor keratinocytes and genetic ablation of Sam68 delays the onset of basal cell carcinomas (BCC) in Gli2-transgenic mice. Moreover, Sam68 plays a critical role in DNA damage-induced DNA repair and nuclear factor kappa B (NF-κB) signaling pathways in keratinocytes, hence conferring keratinocyte sensitivity to DNA damaging agents. Together, our data reveal a novel function of Sam68 in regulating DDR in keratinocytes that is crucial for the growth and survival of NMSC.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , RNA-Binding Proteins/genetics , Skin Neoplasms/pathology , Animals , Cell Line , DNA Damage , DNA Repair , Female , Humans , Male , Mice, Transgenic , NF-kappa B/metabolism , Signal Transduction , Skin Neoplasms/genetics , Zinc Finger Protein Gli2/genetics
17.
PLoS Pathog ; 15(6): e1007898, 2019 06.
Article in English | MEDLINE | ID: mdl-31251784

ABSTRACT

Attaching/Effacing (A/E) bacteria include human pathogens enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and their murine equivalent Citrobacter rodentium (CR), of which EPEC and EHEC are important causative agents of foodborne diseases worldwide. While A/E pathogen infections cause mild symptoms in the immunocompetent hosts, an increasing number of studies show that they produce more severe morbidity and mortality in immunocompromised and/or immunodeficient hosts. However, the pathogenic mechanisms and crucial host-pathogen interactions during A/E pathogen infections under immunocompromised conditions remain elusive. We performed a functional screening by infecting interleukin-22 (IL-22) knockout (Il22-/-) mice with a library of randomly mutated CR strains. Our screen reveals that interruption of the espF gene, which encodes the Type III Secretion System effector EspF (E. coli secreted protein F) conserved among A/E pathogens, completely abolishes the high mortality rates in CR-infected Il22-/- mice. Chromosomal deletion of espF in CR recapitulates the avirulent phenotype without impacting colonization and proliferation of CR, and EspF complement in ΔespF strain fully restores the virulence in mice. Moreover, the expression levels of the espF gene are elevated during CR infection and CR induces disruption of the tight junction (TJ) strands in colonic epithelium in an EspF-dependent manner. Distinct from EspF, chromosomal deletion of other known TJ-damaging effector genes espG and map failed to impede CR virulence in Il22-/- mice. Hence our findings unveil a critical pathophysiological function for EspF during CR infection in the immunocompromised host and provide new insights into the complex pathogenic mechanisms of A/E pathogens.


Subject(s)
Bacterial Proteins/immunology , Carrier Proteins/immunology , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Immunocompromised Host , Intestinal Mucosa/immunology , Tight Junctions/immunology , Animals , Bacterial Proteins/genetics , Carrier Proteins/genetics , Cell Line , Citrobacter rodentium/genetics , Citrobacter rodentium/pathogenicity , Colon/immunology , Colon/microbiology , Colon/pathology , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/pathology , Interleukins/deficiency , Interleukins/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Tight Junctions/genetics , Tight Junctions/pathology , Interleukin-22
18.
Biochem Biophys Res Commun ; 515(2): 325-331, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31151823

ABSTRACT

Transition metals are required for intestinal homeostasis and provide essential nutrients for the resident microbiota. Abnormalities in metal homeostasis are common in Crohn's disease (CD), but remain poorly defined and causes appear multifactorial. There has been renewed interest in understanding these mechanisms with the discovery of an association between a coding variant in SLC39A8 (rs13107325; ZIP8 A391T) and increased CD risk. SLC39A8 encodes the protein ZIP8, a metal transporter that is induced under inflammatory stimuli; however, studies of its gut-specific functions are lacking. Here, we show that SLC39A8 mRNA is differentially expressed in active CD with a high positive correlation with markers of disease severity, including CXCL8, TNFα, IFNγ, and calprotectin. SLC39A8 expression exhibits a negative correlation with SLC39A4 and SLC39A5, two key zinc importers in absorptive enterocytes, and a lack of correlation with two manganese transporters, SLC39A14 and SLC11A2. Immunohistochemistry demonstrates ZIP8 expression in intestinal epithelial cells and immune cells of the lamina propria. Patients with CD exhibit variable patterns of ZIP8 subcellular localization within IECs. In ileal enteroids, SLC39A8 was induced by IFNγ and IFNγ + TNFα, but not by TNFα alone, independent of NF-κB activation. IFNγ also down-regulated SLC39A5. To explore the functional implications of disease-associated genetic variation, in over-expression experiments in HEK293A cells, ZIP8 A391T was associated with increased TNFα-induced NF-κB activation, consistent with a loss of negative regulation. Taken together, these results suggest a potential role for ZIP8 in intestinal inflammation, induced by IFNγ in the intestinal epithelial compartment, and that perturbations in negative regulation of NF-κB by ZIP8 A391T may contribute to CD pathogenesis.


Subject(s)
Cation Transport Proteins/metabolism , Crohn Disease/metabolism , Interferon-gamma/metabolism , Intestinal Mucosa/metabolism , Cation Transport Proteins/genetics , Crohn Disease/etiology , Crohn Disease/genetics , Epithelial Cells/metabolism , HEK293 Cells , Homeostasis , Humans , NF-kappa B/metabolism , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
19.
Cell Tissue Res ; 377(2): 259-268, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30919047

ABSTRACT

MrgprD, a Mas-related G protein-coupled receptor, is initially identified in sensory neurons of mouse dorsal root ganglia (DRG) and has been suggested to participate in somatosensation. However, MrgprD has recently been found to be expressed outside the nervous system such as in aortic endothelia cells and neutrophils. In this study, we used immunohistochemistry to detect the expression and localization of MrgprD in mouse intestinal tract. The immunoreactivity (IR) of MrgprD was found in the smooth muscle layers of small intestine, colon and rectum. In addition, MrgprD IR was colocalized with F4/80-positive macrophages and CD3-positive T lymphocytes resident in the lamina propria of intestinal mucosa. MrgprD was also found to be expressed in primary peritoneal macrophages and splenic T lymphocytes. Furthermore, the presence of MrgprD mRNA and its protein was detected in murine macrophage-like RAW 264.7 and human T lymphocyte Jurkat cell lines. Our study shows, for the first time, the expression and localization of MrgprD in the intestinal tract and in macrophages and T lymphocytes, indicating the potential roles of MrgprD in intestinal mobility and immunity.


Subject(s)
Intestinal Mucosa/metabolism , Macrophages/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, G-Protein-Coupled/metabolism , T-Lymphocytes/metabolism , Animals , Cell Line , Humans , Intestines/cytology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/cytology , T-Lymphocytes/cytology
20.
Gastroenterology ; 155(6): 1706-1715, 2018 12.
Article in English | MEDLINE | ID: mdl-30218667

ABSTRACT

Sporadic colorectal cancer is one of the most common and lethal cancers worldwide. The locations and functions of immune cells in the colorectal tumor microenvironment are complex and heterogeneous. T-helper (Th)1 cell-mediated responses against established colorectal tumors are associated with better outcomes of patients (time of relapse-free or overall survival), whereas Th17 cell-mediated responses and production of interleukin 17A (IL17A) have been associated with worse outcomes of patients. Tumors that develop in mouse models of colorectal cancer are rarely invasive and differ in many ways from human colorectal tumors. However, these mice have been used to study the mechanisms by which Th17 cells and IL17A promote colorectal tumor initiation and growth, which appear to involve their direct effects on colon epithelial cells. Specific members of the colonic microbiota may promote IL17A production and IL17A-producing cell functions in the colonic mucosa to promote carcinogenesis. Increasing our understanding of the interactions between the colonic microbiota and the mucosal immune response, the roles of Th17 cells and IL17 in these interactions, and how these processes are altered during colon carcinogenesis, could lead to new strategies for preventing or treating colorectal cancer.


Subject(s)
Adaptive Immunity/immunology , Colorectal Neoplasms/immunology , Interleukin-17/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Animals , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome/immunology , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...